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ABSTRACT 

 

In the idea of generalized hypergeometric functions, classical summation theorems which includes 

the ones of Gauss, Gauss second, Kummer, Bailey, Dixon, Watson, Whipple, Saalschütz and Dougall play 

a key role. Applications of the above-cited classical summation theorems are well-known. The aim of this 

paper is to obtain the solution of Laplace equation in terms of Fox’s H-function of one variable. 
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1. INTRODUCTION: 

 

Charles Fox [2] introduced a more general function which is well-known in the literature as Fox's H-

function or the H-function. This function is defined and represented by means of the following Mellin-

Barnes type of contour integral: 

Hm,n [x|
(aj,𝖺j)1,p] =   

1
 ∫

+𝜔∞ 
𝜃(s) xsds (1) 

p,q (bj,𝛽j)1,q
 

 
 

2 𝜔 −𝜔∞ 

where  = (– 1), 
∏  

 
 (bj−𝛽js) ∏  

 
 (1−aj+𝖺js) 

𝜃(s) = j=1 q j=1 p 
∏j=       1    (1−bj+𝛽js) ∏j=      1    (aj−𝖺js) 

x is not equal to zero and an empty product is interpreted as unity; p, q, m, n are integers 

satisfying 0 ≤ m ≤ q, 0 ≤ n ≤ p, αj (j = 1, …., p), βj (j = 1, …, q) are positive numbers and aj 

(j = 1, …, p), bj (j = 1, …, q) are complex numbers. L is a suitable contour of Barnes type 

such that poles of (bj – βjs) (j = 1, …, m) lie on the right side of the contour and those of 

(1 – aj + αjs) (j = 1, …, n) lie on the left hand of the contour. These assumptions for the H-

function will be adhered to through out this research work. 

The behavior of the H-function has been given by Braakasma [1, p. 279, (6.5) and 

p. 246, (2.16)]: 

Hm,n [x|
(aj,𝖺j)1,p]  O (|x|) for small x, 

p,q 

where ∑𝑝 

(bj,𝛽j)1,q
 

𝛼j − ∑𝑞 
 
𝛽j ≤ 0 and  = min R(bh/h) (h = 1, .., m) 

and  
Hm,n [x|

(aj,𝖺j)1,p]  O (|x|) for large x, 
p,q (bj,𝛽j)1,q
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j=1 

j=1 

j=1 

p, q 

j=1 

 

where ∑𝑛 
𝑝 j=𝑛+1 

𝛼j + ∑𝑚 
𝑞 j=𝑚+1 

𝛽j Ξ 𝐴 > 0 (2) 
𝑝 
j=1 𝛼j − ∑𝑞 𝛽j < 0 and 

|arg x| < ½ A and  = max R[(aj– 1)/j] (j = 1, …, n). 

The Laplace equation is often encountered in heat and mass transfer theory, fluid 

mechanics, elasticity, electrostatics and other areas of mechanics and physics. Since Fox’s 

H-function is believed to be quite general in nature because it includes a number of well 

known elementary functions as its particular cases. Evidently, therefore, our results would 

apply to a wide variety of useful functions (or products of several such functions) occurring 

frequently in mathematical physics and engineering. 

In this paper, we shall make application of the following modified form of the 

integral [3, p.372, (1)]: 

L L sin ½ n () 

 {sin (x/L)} – 1 sin (nx/L) dx = , (3) 
0 2  – 1 {½ (  n + 1)} 

where n is any integer and Re ( ) > 0. 

 

2. INTEGRAL: 

 

The integral involving the H-function of one variable to be evaluated is: 

L 

 (sin (x/L)) – 1 sin (nx/L) H 
m, l

 [z (sin (x/L))  |
(aj, j)1, p 

(b ,  ) 

 
] dx 




= 2 1 –  L sin ½ n H 

m, l + 1
 

 
[z 2 

–  
| 
(1 – , ), (aj, j)1, p 

j j 1, q 

 

 
 
], (4) 

p + 1, q + 2 (bj, j)1, q, (1/2  /2  n/2, /2) 

where    and Re () > 0, |arg z| < ½ M  is given by: 
𝑙 j=1 𝑝 j=𝑛+1 

𝛼j + ∑𝑚 
𝑞 j=𝑚+1 

𝛽j Ξ 𝑀 > 0 
Proof of (4): 

Replace the H- function by its equivalent contour integral as given in (1), change 

the order of integration, evaluate the inner integral with the help of (3) and finally interpret 

it with (1), to get (4). 

 

3. FIRST BOUNDARY VALUE PROBLEM FOR THE LAPLACE EQUATION: 

 
The two-dimensional Laplace equation has the following form: 

2w + 
w = 0 

  

x2 y2 (5) 

in the Cartesian coordinate system. 

𝛼j − ∑ 

𝛽j − ∑ 

∑ 

∑ 𝛼j − ∑ 𝛽j − ∑ 
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Under the domain 0  x  a, 0  y  b, a rectangle is considered. Boundary conditions are 

prescribed: 

w = f1(y) at x = 0, w = f2(y) at x = a, w = f3(x) at y = 0, w = f4(x) at y = b. 

The solution of equation (5) is given as 



w (x, y) =  An sinh [na – x)/b)] sin (ny/b) 
n = 1 

 


+  Bn sinh (nx/b) sin (ny/b) 
n = 1 

 


+  Cn sin (nx/a) sinh [nb – y)/a)] 
n = 1 

 


+    Dn sin (nx/a) sinh (ny/a) (6) 
n = 1 

where the coefficients An, Bn, Cn and Dn are expressed as 

b 

An = (2/n)  f1() sin (n/b) d (7) 
0 

 
b 

Bn = (2/n)  f2() sin (n/b) d (8) 
0 

 
a 

Cn = (2/n)  f3() sin (n/a) d (9) 
0 

 
a 

Dn = (2/n)  f4() sin (n/a) d (10) 
0 

n = b sinh (na/b), (11) 

and n = a sinh (nb/a). (12) 

 

4. SOLUTION IN TERMS OF H-FUNCTION: 
 

Now choose 

f () = f () = sin (/b) – 1 H 
m, l 

[z (sin (/b))  | 

 
(aj, j)1, p ] (13) 

1 2 p, q (bj, j)1, q 
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[z 2 | 

j=1 



 

and  
f3() = f4() = sin (/a) 

 
 – 1 

H 

 
m, l 

p, q [z (sin (/a)) | 
(aj, j)1, p 

(b ,  ) 

 
] (14) 

j j 1, q 

 

Combining (7), (8) and (13) and making the use of integral (4), we derive 

A = B = 2 2 –  (b/ ) sin ½ n H
m, l + 1

 
[z 2 

–  
| 
(1 – , ), (aj, j)1, p 

],
 

n n n p + 1, q + 2 (bj, j)1, q, (1/2  /2  n/2, /2) 

(15) 

Similarly from (9), (10) and (14) and making the use of integral (4), we 

derive 

C = D = 2 2 –  (a/ ) sin ½ n H
m, l + 1

 
[z 2 

–  
| 
(1 – , ), (aj, j)1, p 

],
 

n n n p + 1, q + 2 (bj, j)1, q, (1/2  /2  n/2, /2) 

(16) 

Putting the value of An, Bn, Cn and Dn from (15) and (16) in (6), we get the 

following required solution of the Laplace equation in terms of Fox’s H-function: 



w (x, y) =  2 2 –  (b/n) sin ½ n sinh [na – x)/b)] sin (ny/b) 
n = 1 

 


+  2 2 –  (b/n) sin ½ n sinh (nx/b) sin (ny/b) 
n = 1 

 


+  2 2 –  (a/n) sin ½ n sin (nx/a) sinh [nb – y)/a)] 
n = 1 

 


+  2 2 –  (a/n) sin ½ n sin (nx/a) sinh (ny/a) 
n = 1 

 

m, l + 1 
p + 1, q + 2 

–  (1 – , ), (aj, j)1, p 

(bj, j)1, q, (1/2  /2  n/2, /2) 
], (17) 

where    and Re () > 0, |arg z| < ½ M  is given by: 
𝑙 j=1 𝑝 j=𝑛+1 

𝛼j + ∑𝑚 
𝑞 j=𝑚+1 

𝛽j Ξ 𝑀 > 0 
 

5. SPECIAL SOLUTION: 

 

The importance of the H-function lies largely from the possibility of expressing by 

means of the H-symbols a great many of special functions appearing in applied 

mathematics, physical sciences and statistics. So that each of 

 H 

∑ 𝛼j − ∑ 𝛽j − ∑ 
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the solutions given in (17) becomes a master or key solution from which a very large number of solutions 

can be derived for Meijer’s G-function, Generalized Hypergeometric function, Bessel, Legendre, Whittaker 

functions, their combinations and many other functions. 
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